
Assignment 3
Supervised Learning - model training and evaluation

Kyle Bradbury

2025-02-05

Table of contents

Instructions

Instructions for all assignments can be found here. Note: this assignment falls under collabo-
ration Mode 2: Individual Assignment – Collaboration Permitted. Please refer to the syllabus
for additional information. Please be sure to list the names of any students that you worked
with on this assignment. Total points in the assignment add up to 90; an additional 10 points
are allocated to professionalism and presentation quality.

Learning Objectives

This assignment will provide structured practice to help enable you to…

1. Understand the primary workflow in machine learning: (1) identifying a hypothesis
function set of models, (2) determining a loss/cost/error/objective function to minimize,
and (3) minimizing that function through gradient descent

2. Understand the inner workings of logistic regression and how linear models for classifi-
cation can be developed.

3. Gain practice in implementing machine learning algorithms from the most basic build-
ing blocks to understand the math and programming behind them to achieve practical
proficiency with the techniques

4. Implement batch gradient descent and become familiar with how that technique is used
and its dependence on the choice of learning rate

5. Evaluate supervised learning algorithm performance through ROC curves and using cross
validation

6. Apply regularization to linear models to improve model generalization performance

1

https://kylebradbury.github.io/ids705/notebooks/assignment_instructions.html

Exercise 1 - Classification using logistic regression: build it from the ground up

[60 points]

This exercise will walk you through the full life-cycle of a supervised machine learning classi-
fication problem. Classification problem consists of two features/predictors (e.g. petal width
and petal length) and your goal is to predict one of two possible classes (class 0 or class 1).
You will build, train, and evaluate the performance of a logistic regression classifier on the
data provided. Before you begin any modeling, you’ll load and explore your data in Part I
to familiarize yourself with it - and check for any missing or erroneous data. Then, in Part
II, we will review an appropriate hypothesis set of functions to fit to the data: in this case,
logistic regression. In Part III, we will derive an appropriate cost function for the data (spoiler
alert: it’s cross-entropy) as well as the gradient descent update equation that will allow you to
optimize that cost function to identify the parameters that minimize the cost for the training
data. In Part IV, all the pieces come together and you will implement your logistic regression
model class including methods for fitting the data using gradient descent. Using that model
you’ll test it out and plot learning curves to verify the model learns as you train it and to
identify and appropriate learning rate hyperparameter. Lastly, in Part V you will apply the
model you designed, implemented, and verified to your actual data and evaluate and visualize
its generalization performance as compared to a KNN algorithm. When complete, you will
have accomplished learning objectives 1-5 above!

A. Load, prepare, and plot your data

Note

Data for this exercise can be downloaded here

You are given some data for which you are tasked with constructing a classifier. The first step
when facing any machine learning project: look at your data!

1.1 Load the data.

• In the data folder in the same directory of this notebook, you’ll find the data in
A3_Q1_data.csv. This file contains the binary class labels, 𝑦, and the features 𝑥1 and
𝑥2.

• Divide your data into a training and testing set where the test set accounts for 30
percent of the data and the training set the remaining 70 percent.

• Plot the training data by class.
• Comment on the data: do the data appear separable? May logistic regression be a good

choice for these data? Why or why not?

2

https://github.com/kylebradbury/ids705/tree/main/notebooks/data/a3

1.2 Do the data require any preprocessing due to missing values, scale differences (e.g. different
ranges of values), etc.? If so, how did you handle these issues?

Next, we walk through our key steps for model fitting: choose a hypothesis set of models to
train (in this case, logistic regression); identify a cost function to measure the model fit to
our training data; optimize model parameters to minimize cost (in this case using gradient
descent). Once we’ve completed model fitting, we will evaluate the performance of our model
and compare performance to another approach (a KNN classifier).

B. Stating the hypothesis set of models to evaluate (we’ll use logistic regression)

Given that our data consists of two features, our logistic regression problem will be applied to
a two-dimensional feature space. Recall that our logistic regression model is:

𝑓(x𝑖, w) = 𝜎(w⊤x𝑖)

where the sigmoid function is defined as 𝜎(𝑥) = 𝑒𝑥

1 + 𝑒𝑥 = 1
1 + 𝑒−𝑥 . Also, since this is a two-

dimensional problem, we define w⊤x𝑖 = 𝑤0𝑥𝑖,0+𝑤1𝑥𝑖,1+𝑤2𝑥𝑖,2 and here, x𝑖 = [𝑥𝑖,0, 𝑥𝑖,1, 𝑥𝑖,2]⊤,
and 𝑥𝑖,0 ≜ 1
Remember from class that we interpret our logistic regression classifier output (or confidence
score) as the conditional probability that the target variable for a given sample 𝑦𝑖 is from class
“1”, given the observed features, x𝑖. For one sample, (𝑦𝑖, x𝑖), this is given as:

𝑃(𝑌 = 1|𝑋 = x𝑖) = 𝑓(x𝑖, w) = 𝜎(w⊤x𝑖)

In the context of maximizing the likelihood of our parameters given the data, we define this
to be the likelihood function 𝐿(w|𝑦𝑖, x𝑖), corresponding to one sample observation from the
training dataset.

Aside: the careful reader will recognize this expression looks different from when we talk about
the likelihood of our data given the true class label, typically expressed as 𝑃(𝑥|𝑦), or the posterior
probability of a class label given our data, typically expressed as 𝑃(𝑦|𝑥). In the context of
training a logistic regression model, the likelihood we are interested in is the likelihood function
of our logistic regression parameters, w. It’s our goal to use this to choose the parameters
to maximize the likelihood function.

No output is required for this section - just read and use this information in the
later sections.

3

C. Find the cost function that we can use to choose the model parameters, w, that best
fit the training data.

1.3 What is the likelihood function that corresponds to all the 𝑁 samples in our training
dataset that we will wish to maximize? Unlike the likelihood function written above which
gives the likelihood function for a single training data pair (𝑦𝑖, x𝑖), this question asks for the
likelihood function for the entire training dataset {(𝑦1, x1), (𝑦2, x2), ..., (𝑦𝑁 , x𝑁)}.

1.4 Since a logarithm is a monotonic function, maximizing the 𝑓(𝑥) is equivalent to maximiz-
ing ln[𝑓(𝑥)]. Express the likelihood from the last question as a cost function of the model
parameters, 𝐶(w); that is the negative of the logarithm of the likelihood. Express this cost
as an average cost per sample (i.e. divide your final value by 𝑁), and use this quantity going
forward as the cost function to optimize.

1.5 Calculate the gradient of the cost function with respect to the model parameters ∇w𝐶(w).
Express this in terms of the partial derivatives of the cost function with respect to each of the
parameters, e.g. ∇w𝐶(w) = [𝜕𝐶

𝜕𝑤0
, 𝜕𝐶
𝜕𝑤1

, 𝜕𝐶
𝜕𝑤2

].

To simplify notation, please use w⊤x instead of writing out 𝑤0𝑥𝑖,0 + 𝑤1𝑥𝑖,1 + 𝑤2𝑥𝑖,2 when it
appears each time (where 𝑥𝑖,0 = 1 for all 𝑖). You are also welcome to use 𝜎() to represent the
sigmoid function. Lastly, this will be a function the features, 𝑥𝑖,𝑗 (with the first index in the
subscript representing the observation and the second the feature; targets, 𝑦𝑖; and the logistic
regression model parameters, 𝑤𝑗.

1.6 Write out the gradient descent update equation. This should clearly express how to
update each weight from one step in gradient descent 𝑤(𝑘)

𝑗 to the next 𝑤(𝑘+1)
𝑗 . There should

be one equation for each model logistic regression model parameter (or you can represent it in
vectorized form). Assume that 𝜂 represents the learning rate.

D. Implement gradient descent and your logistic regression algorithm

1.7 Implement your logistic regression model.

• You are provided with a template, below, for a class with key methods to help with your
model development. It is modeled on the Scikit-Learn convention. For this, you only
need to create a version of logistic regression for the case of two feature variables (i.e. two
predictors).

• Create a method called sigmoid that calculates the sigmoid function

• Create a method called cost that computes the cost function 𝐶(w) for a given dataset
and corresponding class labels. This should be the average cost (make sure your total
cost is divided by your number of samples in the dataset).

4

• Create a method called gradient_descent to run one step of gradient descent on your
training data. We’ll refer to this as “batch” gradient descent since it takes into account
the gradient based on all our data at each iteration of the algorithm.

• Create a method called fit that fits the model to the data (i.e. sets the model parameters
to minimize cost) using your gradient_descent method. In doing this we’ll need to
make some assumptions about the following:

– Weight initialization. What should you initialize the model parameters to? For this,
randomly initialize the weights to a different values between 0 and 1.

– Learning rate. How slow/fast should the algorithm step towards the minimum?
This you will vary in a later part of this problem.

– Stopping criteria. When should the algorithm be finished searching for the opti-
mum? There are two stopping criteria: small changes in the gradient descent step
size and a maximum number of iterations. The first is whether there was a suffi-
ciently small change in the gradient; this is evaluated as whether the magnitude
of the step that the gradient descent algorithm takes changes by less than 10−6

between iterations. Since we have a weight vector, we can compute the change in
the weight by evaluating the 𝐿2 norm (Euclidean norm) of the change in the vec-
tor between iterations. From our gradient descent update equation we know that
mathematically this is || − 𝜂∇w𝐶(w)||. The second criterion is met if a maximum
number of iterations has been reach (5,000 in this case, to prevent infinite loops
from poor choices of learning rates).

– Design your approach so that at each step in the gradient descent algorithm you
evaluate the cost function for both the training and the test data for each new value
for the model weights. You should be able to plot cost vs gradient descent iteration
for both the training and the test data. This will allow you to plot “learning curves”
that can be informative for how the model training process is proceeding.

• Create a method called predict_proba that predicts confidence scores (that can be
thresholded into the predictions of the predict method.

• Create a method called predict that makes predictions based on the trained model,
selecting the most probable class, given the data, as the prediction, that is class that
yields the larger 𝑃(𝑦|x).

• (Optional, but recommended) Create a method called learning_curve that produces
the cost function values that correspond to each step from a previously run gradient
descent operation.

• (Optional, but recommended) Create a method called prepare_x which appends a col-
umn of ones as the first feature of the dataset X to account for the bias term (𝑥𝑖,1 = 1).

This structure is strongly encouraged; however, you’re welcome to adjust this to your needs
(adding helper methods, modifying parameters, etc.).

5

Logistic regression class
class Logistic_regression:

Class constructor
def __init__(self):

self.w = None # logistic regression weights
self.saved_w = [] # Since this is a small problem, we can save the weights

at each iteration of gradient descent to build our
learning curves

returns nothing
pass

Method for calculating the sigmoid function of w^T X for an input set of weights
def sigmoid(self, X, w):

returns the value of the sigmoid
pass

Cost function for an input set of weights
def cost(self, X, y, w):

returns the average cross entropy cost
pass

Update the weights in an iteration of gradient descent
def gradient_descent(self, X, y, lr):

returns a scalar of the magnitude of the Euclidean norm
of the change in the weights during one gradient descent step
pass

Fit the logistic regression model to the data through gradient descent
def fit(self, X, y, w_init, lr, delta_thresh=1e-6, max_iter=5000, verbose=False):

Note the verbose flag enables you to print out the weights at each iteration
(optional - but may help with one of the questions)

returns nothing
pass

Use the trained model to predict the confidence scores (prob of positive class in this case)
def predict_proba(self, X):

returns the confidence score for the each sample
pass

Use the trained model to make binary predictions
def predict(self, X, thresh=0.5):

6

returns a binary prediction for each sample
pass

Stores the learning curves from saved weights from gradient descent
def learning_curve(self, X, y):

returns the value of the cost function from each step in gradient descent
from the last model fitting process
pass

Appends a column of ones as the first feature to account for the bias term
def prepare_x(self, X):

returns the X with a new feature of all ones (a column that is the new column 0)
pass

1.8 Choose a learning rate and fit your model. Learning curves are a plot of metrics of model
performance evaluated through the process of model training to provide insights about how
model training is proceeding. Show the learning curves for the gradient descent process for
learning rates of {10−0, 10−2, 10−4}. For each learning rate plot the learning curves by plotting
both the training and test data average cost as a function of each iteration of gradient
descent. You should run the model fitting process until it completes (up to 5,000 iterations of
gradient descent). All of the 6 resulting curves (train and test average cost for each learning
rate) should be plotted on the same set of axes to enable direct comparison. Note: make
sure you’re using average cost per sample, not the total cost.

• Try running this process for a really big learning rate for this problem: 102. Look at
the weights that the fitting process generates over the first 50 iterations and how they
change. Either print these first 50 iterations as console output or plot them. What
happens? How does the output compare to that corresponding to a learning rate of 100

and why?
• What is the impact that the different values of learning have on the speed of the process

and the results?
• Of the options explored, what learning rate do you prefer and why?
• Use your chosen learning rate for the remainder of this problem.

E. Evaluate your model performance through cross validation

1.9 Test the performance of your trained classifier using K-folds cross validation resampling
technique. The scikit-learn package StratifiedKFolds may be helpful.

• Train your logistic regression model and a K-Nearest Neighbor classification model with
𝑘 = 7 nearest neighbors.

7

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html#sklearn.model_selection.StratifiedKFold

• Using the trained models, make four plots: two for logistic regression and two for KNN.
For each model have one plot showing the training data used for fitting the model, and
the other showing the test data. On each plot, include the decision boundary resulting
from your trained classifier.

• Produce a Receiver Operating Characteristic curve (ROC curve) that represents the
performance from cross validated performance evaluation for each classifier (your logistic
regression model and the KNN model, with 𝑘 = 7 nearest neighbors). For the cross
validation, use 𝑘 = 10 folds.

– Plot these curves on the same set of axes to compare them. You should not plot one
curve for each fold of k-folds; instead, you should plot one ROC curve for Logistic
Regression and one for KNN (each should incorporate all 10 folds of validation).
Also, don’t forget to plot the “chance” line.

– On the ROC curve plot, also include the chance diagonal for reference (this repre-
sents the performance of the worst possible classifier). This is represented as a line
from (0, 0) to (1, 1).

– Calculate the Area Under the Curve for each model and include this measure in the
legend of the ROC plot.

• Comment on the following:

– What is the purpose of using cross validation for this problem?
– How do the models compare in terms of performance (both ROC curves and decision

boundaries) and which model (logistic regression or KNN) would you select to use
on previously unseen data for this problem and why?

Exercise 2 - Digits classification

An exploration of regularization, imbalanced classes, ROC and PR curves

[30 points]

The goal of this exercise is to apply your supervised learning skills on a very different dataset:
in this case, image data; MNIST: a collection of images of handwritten digits. Your goal is to
train a classifier that is able to distinguish the number “3” from all possible numbers and to do
so as accurately as possible. You will first explore your data (this should always be your starting
point to gain domain knowledge about the problem.). Since the feature space in this problem
is 784-dimensional, overfitting is possible. To avoid overfitting you will investigate the impact
of regularization on generalization performance (test accuracy) and compare regularized and
unregularized logistic regression model test error against other classification techniques such
as naive Bayes and random forests and draw conclusions about the best-performing model.

8

Start by loading your dataset from the MNIST dataset of handwritten digits, using the code
provided below. MNIST has a training set of 60,000 examples, and a test set of 10,000 examples.
The digits have been size-normalized and centered in a fixed-size image.

Your goal is to classify whether or not an example digit is a 3. Your binary classifier should
predict 𝑦 = 1 if the digit is a 3, and 𝑦 = 0 otherwise. Create your dataset by transforming
your labels into a binary format (3’s are class 1, and all other digits are class 0).

2.1 Plot 10 examples of each class (i.e. class 𝑦 = 0, which are not 3’s and class 𝑦 = 1 which
are 3’s), from the training dataset.

Note that the data are composed of samples of length 784. These represent 28 x 28 images, but
have been reshaped for storage convenience. To plot digit examples, you’ll need to reshape the
data to be 28 x 28 (which can be done with numpy reshape).

2.2 How many examples are present in each class? Show a plot of samples by class (bar plot).
What fraction of samples are positive? What issues might this cause?

2.3 Identify the value of the regularization parameter that optimizes model performance on out-
of-sample data. Using a logistic regression classifier, apply lasso regularization and retrain the
model and evaluate its performance on the test set over a range of values on the regularization
coefficient. You can implement this using the LogisticRegression module and activating the
‘l1’ penalty; the parameter 𝐶 is the inverse of the regularization strength. Vary the value of C
logarithmically from 10−4 to 104 (and make your x-axes logarithmic in scale) and evaluate it
at least 20 different values of C. As you vary the regularization coefficient, Plot the following
four quantities (this should result in 4 separate plots)…

• The number of model parameters that are estimated to be nonzero (in the logistic re-
gression model, one attribute is coef_, which gives you access to the model parameters
for a trained model)

• The cross entropy loss (which can be evaluated with the Scikit Learn log_loss function)
• Area under the ROC curve (AUC)
• The 𝐹1-score (assuming a threshold of 0.5 on the predicted confidence scores, that is,

scores above 0.5 are predicted as Class 1, otherwise Class 0). Scikit Learn also has a
f1_score function which may be useful. -Which value of C seems best for this problem?
Please select the closest power of 10. You will use this in the next part of this exercise.

2.4 Train and test a (1) logistic regression classifier with minimal regularization (using the
Scikit Learn package, set penalty=‘l1’, C=1e100 to approximate this), (2) a logistic regression
classifier with the best value of the regularization parameter from the last section, (3) a
Gradient Boosting classifier, and (4) a Random Forest (RF) classifier (using default parameters
for the RF classifier).

• Compare your classifiers’ performance using ROC and Precision Recall (PR) curves. For
the ROC curves, all your curves should be plotted on the same set of axes so that you
can directly compare them. Please do the same wih the PR curves.

9

http://yann.lecun.com/exdb/mnist/
http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html

• Plot the line that represents randomly guessing the class (50% of the time a “3”, 50% not
a “3”). You SHOULD NOT actually create random guesses. Instead, you should think
through the theory behind how ROC and PR curves work and plot the appropriate lines.
It’s a good practice to include these in ROC and PR curve plots as a reference point.

• For PR curves, an excellent resource on how to correctly plot them can be found here
(ignore the section on “non-linear interpolation between two points”). This describes
how a random classifier is represented in PR curves and demonstrates that it should
provide a lower bound on performance.

• When training your logistic regression model, it’s recommended that you use
solver=“liblinear”; otherwise, your results may not converge.

• Describe the performance of the classifiers you compared. Did the regularization of the
logistic regression model make much difference here? Which classifier you would select
for application to unseen data.

Load the MNIST Data
from sklearn.datasets import fetch_openml
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import pickle

Set this to True to download the data for the first time and False after the first time
so that you just load the data locally instead
download_data = True

if download_data:
Load data from https://www.openml.org/d/554
X, y = fetch_openml('mnist_784', return_X_y=True, as_frame=False)

Adjust the labels to be '1' if y==3, and '0' otherwise
y[y!='3'] = 0
y[y=='3'] = 1
y = y.astype('int')

Divide the data into a training and test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1/7, random_state=88)

file = open('tmpdata', 'wb')
pickle.dump((X_train, X_test, y_train, y_test), file)
file.close()

else:
file = open('tmpdata', 'rb')

10

https://classeval.wordpress.com/introduction/introduction-to-the-precision-recall-plot/

X_train, X_test, y_train, y_test = pickle.load(file)
file.close()

11

