
Assignment 4
Neural Networks

Kyle Bradbury

2025-02-20

Table of contents

Instructions

Instructions for all assignments can be found here. Note: this assignment falls under collabo-
ration Mode 2: Individual Assignment – Collaboration Permitted. Please refer to the syllabus
for additional information. Please be sure to list the names of any students that you worked
with on this assignment. Total points in the assignment add up to 90; an additional 10 points
are allocated to professionalism and presentation quality.

Learning objectives

Through completing this assignment you will be able to…

1. Identify key hyperparameters in neural networks and how they can impact model training
and fit

2. Build, tune the parameters of, and apply feed-forward neural networks to data
3. Implement and explain each and every part of a standard fully-connected neural network

and its operation including feed-forward propagation, backpropagation, and gradient
descent.

4. Apply a standard neural network implementation and search the hyperparameter space
to select optimized values.

5. Develop a detailed understanding of the math and practical implementation considera-
tions of neural networks, one of the most widely used machine learning tools, so that it
can be leveraged for learning about other neural networks of different model architec-
tures.

1

https://kylebradbury.github.io/ids705/notebooks/assignment_instructions.html

Exercise 1 - Exploring and optimizing neural network hyperparameters

[60 points]

Neural networks have become ubiquitous in the machine learning community, demonstrating
exceptional performance over a wide range of supervised learning tasks. The benefits of these
techniques come at a price of increased computational complexity and model designs with
increased numbers of hyperparameters that need to be correctly set to make these techniques
work. It is common that poor hyperparameter choices in neural networks result in significant
decreases in model generalization performance. The goal of this exercise is to better understand
some of the key hyperparameters you will encounter in practice using neural networks so that
you can be better prepared to tune your model for a given application. Through this exercise,
you will explore two common approaches to hyperparameter tuning a manual approach where
we greedily select the best individual hyperparameter (often people will pick potentially sen-
sible options, try them, and hope it works) as well as a random search of the hyperparameter
space which as been shown to be an efficient way to achieve good hyperparameter values.

To explore this, we’ll be using the example data created below throughout this exercise and
the various training, validation, test splits. We will select each set of hyperparameters for
our greedy/manual approach and the random search using a training/validation split, then re-
train on the combined training and validation data before finally evaluating our generalization
performance for both our final models on the test data.

Optional for clear plotting on Macs
%config InlineBackend.figure_format='retina'

Some of the network training leads to warnings. When we know and are OK with
what's causing the warning and simply don't want to see it, we can use the
following code. Run this block
to disable warnings
import sys
import os
import warnings

if not sys.warnoptions:
warnings.simplefilter("ignore")
os.environ["PYTHONWARNINGS"] = 'ignore'

import numpy as np
from sklearn.model_selection import PredefinedSplit

#---
Create the data

2

#---
Data generation function to create a checkerboard-patterned dataset
def make_data_normal_checkerboard(n, noise=0):

n_samples = int(n/4)
shift = 0.5
c1a = np.random.randn(n_samples,2)*noise + [-shift, shift]
c1b = np.random.randn(n_samples,2)*noise + [shift, -shift]
c0a = np.random.randn(n_samples,2)*noise + [shift, shift]
c0b = np.random.randn(n_samples,2)*noise + [-shift, -shift]
X = np.concatenate((c1a,c1b,c0a,c0b),axis=0)
y = np.concatenate((np.ones(2*n_samples), np.zeros(2*n_samples)))

Set a cutoff to the data and fill in with random uniform data:
cutoff = 1.25
indices_to_replace = np.abs(X)>cutoff
for index,value in enumerate(indices_to_replace.ravel()):

if value:
X.flat[index] = np.random.rand()*2.5-1.25

return (X,y)

Training datasets
np.random.seed(42)
noise = 0.45
X_train,y_train = make_data_normal_checkerboard(500, noise=noise)

Validation and test data
X_val,y_val = make_data_normal_checkerboard(500, noise=noise)
X_test,y_test = make_data_normal_checkerboard(500, noise=noise)

For RandomSeachCV, we will need to combine training and validation sets then
specify which portion is training and which is validation
Also, for the final performance evaluation, train on all of the training AND
validation data
X_train_plus_val = np.concatenate((X_train, X_val), axis=0)
y_train_plus_val = np.concatenate((y_train, y_val), axis=0)

Create a predefined train/test split for RandomSearchCV (to be used later)
validation_fold = np.concatenate((-1*np.ones(len(y_train)), np.zeros(len(y_val))))
train_val_split = PredefinedSplit(validation_fold)

To help get you started we should always begin by visualizing our training data, here’s some
code that does that:

3

import matplotlib.pyplot as plt

Code to plot the sample data
def plot_data(ax,X,y,title, limits):

Select the colors to use in the plots
color0 = '#121619' # Dark grey
color1 = '#00B050' # Green
color_boundary='#858585'

Separate samples by class
samples0 = X[y==0]
samples1 = X[y==1]

ax.plot(samples0[:,0],samples0[:,1],
marker='o',
markersize=5,
linestyle="None",
color=color0,
markeredgecolor='w',
markeredgewidth=0.5,
label='Class 0')

ax.plot(samples1[:,0],samples1[:,1],
marker='o',
markersize=5,
linestyle="None",
color=color1,
markeredgecolor='w',
markeredgewidth=0.5,
label='Class 1')

ax.set_title(title)
ax.set_xlabel('x_1')
ax.set_ylabel('x_2')
ax.legend(loc='upper left')
ax.set_aspect('equal')

fig, ax = plt.subplots(constrained_layout=True, figsize=(5,5))
limits = [-1.25, 1.25, -1.25, 1.25]
plot_data(ax, X_train, y_train, 'Training Data', limits)

4

The hyperparameters we want to explore control the architecture of our model and how our
model is fit to our data. These hyperparameters include the (a) learning rate, (b) batch size,
and the (c) regularization coefficient, as well as the (d) model architecture hyperparameters
(the number of layers and the number of nodes per layer). We’ll explore each of these and
determine an optimized configuration of the network for this problem through this exercise.
For all of the settings we’ll explore and just, we’ll assume the following default hyperparameters
for the model (we’ll use scikit learn’s MLPClassifier as our neural network model):

• learning_rate_init = 0.03
• hidden_layer_sizes = (30,30) (two hidden layers, each with 30 nodes)
• alpha = 0 (regularization penalty)
• solver = ‘sgd’ (stochastic gradient descent optimizer)
• tol = 1e-5 (this sets the convergence tolerance)
• early_stopping = False (this prevents early stopping)
• activation = ‘relu’ (rectified linear unit)
• n_iter_no_change = 1000 (this prevents early stopping)
• batch_size = 50 (size of the minibatch for stochastic gradient descent)
• max_iter = 500 (maximum number of epochs, which is how many times each data point

will be used, not the number of gradient steps)

This default setting is our initial guess of what good values may be. Notice there are many
model hyperparameters in this list: any of these could potentially be options to search over.

5

https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier.score

We constrain the search to those hyperparameters that are known to have a significant impact
on model performance.

1.1. Visualize the impact of different hyperparameter choices on classifier decision
boundaries. Visualize the impact of different hyperparameter settings. Starting with the
default settings above make the following changes (only change one hyperparameter at a
time). For each hyperparameter value, plot the decision boundary on the training data (you
will need to train the model once for each parameter value):

1. Vary the architecture (hidden_layer_sizes) by changing the number of nodes per layer
while keeping the number of layers constant at 2: (2,2), (5,5), (30,30). Here (X,X) means
a 2-layer network with X nodes in each layer.

2. Vary the learning rate: 0.0001, 0.01, 1
3. Vary the regularization: 0, 1, 10
4. Vary the batch size: 5, 50, 500

This should produce 12 plots, altogether. For easier comparison, please plot nodes & layers
combinations, learning rates, regularization strengths, and batch sizes in four separate rows
(with three columns each representing a different value for each of those hyperparameters).

As you’re exploring these settings, visit this website, the Neural Network Playground, which
will give you the chance to interactively explore the impact of each of these parameters on
a similar dataset to the one we use in this exercise. The tool also allows you to adjust the
learning rate, batch size, regularization coefficient, and the architecture and to see the resulting
decision boundary and learning curves. You can also visualize the model’s hidden node output
and its weights, and it allows you to add in transformed features as well. Experiment by
adding or removing hidden layers and neurons per layer and vary the hyperparameters.

1.2. Manual (greedy) hyperparameter tuning I: manually optimize hyperparam-
eters that govern the learning process, one hyperparameter at a time. Now with
some insight into which settings may work better than others, let’s more fully explore the per-
formance of these different settings in the context of our validation dataset through a manual
optimization process. Holding all else constant (with the default settings mentioned above),
vary each of the following parameters as specified below. Train your algorithm on the training
data, and evaluate the performance of your trained algorithm on the validation dataset. Here,
overall accuracy is a reasonable performance metric since the classes are balanced and we don’t
weight one type of error as more important than the other; therefore, use the score method
of the MLPClassifier for this. Create plots of accuracy vs each parameter you vary (this will
result in three plots).

1. Vary learning rate logarithmically from 10−5 to 100 with 20 steps
2. Vary the regularization parameter logarithmically from 10−8 to 102 with 20 steps
3. Vary the batch size over the following values: [1, 3, 5, 10, 20, 50, 100, 250, 500]

For each of these cases:

6

https://playground.tensorflow.org/#activation=relu&batchSize=10&dataset=xor®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=20&networkShape=2,1&seed=0.89022&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false&showTestData_hide=false

• Based on the results, report your optimal choices for each of these hyperparameters and
why you selected them.

• Since neural networks can be sensitive to initialization values, you may notice these
plots may be a bit noisy. Consider this when selecting the optimal values of the hyper-
parameters. If the noise seems significant, run the fit and score procedure multiple times
(without fixing a random seed) and report the average. Rerunning the algorithm will
change the initialization and therefore the output (assuming you do not set a random
seed for that algorithm).

• Use the chosen hyperparameter values as the new default settings for 1.3 and 1.4.

1.3. Manual (greedy) hyperparameter tuning II: manually optimize hyperparam-
eters that impact the model architecture. Next, we want to explore the impact of the
model architecture on performance and optimize its selection. This means varying two param-
eters at a time instead of one as above. To do this, evaluate the validation accuracy resulting
from training the model using each pair of possible numbers of nodes per layer and number
of layers from the lists below. We will assume that for any given configuration the number of
nodes in each layer is the same (e.g. (2,2,2), which would be a 3-layer network with 2 hidden
node in each layer and (25,25) are valid, but (2,5,3) is not because the number of hidden nodes
varies in each layer). Use the manually optimized values for learning rate, regularization, and
batch size selected from 1.2.

• Number of nodes per layer: [1, 2, 3, 4, 5, 10, 15, 25, 30]
• Number of layers = [1, 2, 3, 4] Report the accuracy of your model on the vali-

dation data. For plotting these results, use heatmaps to plot the data in two
dimensions. To make the heatmaps, you can use [this code for creating heatmaps]
https://matplotlib.org/stable/gallery/images_contours_and_fields/image_annotated_heatmap.html).
Be sure to include the numerical values of accuracy in each grid square as shown in the
linked example and label your x, y, and color axes as always. For these numerical values,
round them to 2 decimal places (due to some randomness in the training process, any
further precision is not typically meaningful).

• When you select your optimized parameters, be sure to keep in mind that these values
may be sensitive to the data and may offer the potential to have high variance for larger
models. Therefore, select the model with the highest accuracy but lowest number of
total model weights (all else equal, the simpler model is preferred).

• What do the results show? Which parameters did you select and why?

1.4. Manual (greedy) model selection and retraining. Based the optimal choice of hy-
perparameters, train your model with your optimized hyperparameters on all the training data
AND the validation data (this is provided as X_train_plus_val and y_train_plus_val).

• Apply the trained model to the test data and report the accuracy of your final model on
the test data.

7

• Plot an ROC curve of your performance (plot this with the curve in 1.5 on the same set
of axes you use for that question).

1.5. Automated hyperparameter search through random search. The manual
(greedy) approach (setting one or two parameters at a time holding the rest constant),
provides good insights into how the neural network hyperparameters impacts model fitting
for this particular training process. However, it is limited in one very problematic way: it
depends heavily on a good “default” setting of the hyperparameters. Those were provided
for you in this exercise, but are not generally know. Our manual optimization was somewhat
greedy because we picked the hyperparameters one at a time rather than looking at different
combinations of hyperparameters. Adopting such a pseudo-greedy approach to that manual
optimization also limits our ability to more deeply search the hyperparameter space since
we don’t look at simultaneous changes to multiple parameters. Now we’ll use a popular
hyperparameter optimization tool to accomplish that: random search.

Random search is an excellent example of a hyperparameter optimization search strategy that
has been shown to be more efficient (requiring fewer training runs) than another common
approach: grid search. Grid search evaluates all possible combinations of hyperparameters
from lists of possible hyperparameter settings - a very computationally expensive process. Yet
another attractive alternative is Bayesian Optimization, which is an excellent hyperparameter
optimization strategy but we will leave that to the interested reader.

Our particular random search tool will be Scikit-Learn’s RandomizedSearchCV. This performs
random search employing cross validation for performance evaluation (we will adjust this to
ve a train/validation split).

Using RandomizedSearchCV, train on the training data while validating on the validation data
(see instructions below on how to setup the train/validation split automatically). This tool
will randomly pick combinations of parameter values and test them out, returning the best
combination it finds as measured by performance on the validation set. You can use this
example as a template for how to do this.

• To make this comparable to the training/validation setup used for the greedy optimiza-
tion, we need to setup a training and validation split rather than use cross validation. To
do this for RandomSearchCV we input the COMBINED training and validation dataset
(X_train_plus_val, and y_train_plus_val) and we set the cv parameter to be the
train_val_split variable we provided along with the dataset. This will setup the algo-
rithm to make its assessments training just on the training data and evaluation on the
validation data. Once RandomSearchCV completes its search, it will fit the model one
more time to the combined training and validation data using the optimized parameters
as we would want it to. Note: The object returned by running fit (the random search)
is NOT the best estimator. You can access the best estimator through the attribute
.best_estimator_, assuming that you did not pass refit=False.

8

https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a?ref=https://githubhelp.com
https://arxiv.org/abs/1807.02811
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html#sklearn.model_selection.RandomizedSearchCV
https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html#sphx-glr-auto-examples-model-selection-plot-randomized-search-py
https://scikit-learn.org/stable/auto_examples/model_selection/plot_randomized_search.html#sphx-glr-auto-examples-model-selection-plot-randomized-search-py

• Set the number of iterations to at least 200 (you’ll look at 200 random pairings of possible
hyperparameters). You can go as high as you want, but it will take longer the larger the
value.

• If you run this on Colab or any system with multiple cores, set the parameter n_jobs to
-1 to use all available cores for more efficient training through parallelization

• You’ll need to set the range or distribution of the parameters you want to sample from.
Search over the same ranges as in previous problems. To tell the algorithm the ranges
to search, use lists of values for candidate batch_size, since those need to be integers
rather than a range; the loguniform scipy function for setting the range of the learning
rate and regularization parameter, and a list of tuples for the hidden_layer_sizes
parameter, as you used in the greedy optimization.

• Once the model is fit, use the best_params_ property of the fit classifier attribute to
extract the optimized values of the hyperparameters and report those and compare them
to what was selected through the manual, greedy optimization.

For the final generalization performance assessment:

• State the accuracy of the optimized models on the test dataset
• Plot the ROC curve corresponding to your best model on the test dataset through

greedy hyperparameter section vs the model identified through random search (these
curves should be on the same set of axes for comparison). In the legend of the plot,
report the AUC for each curve. This should be one single graph with 3 curves (one for
greedy search, one for random search, and one representing random chance). Please also
provide AUC score for greedy research and random search.

• Plot the final decision boundary for the greedy and random search-based classifiers along
with the test dataset to demonstrate the shape of the final boundary

• How did the generalization performance compare between the hyperparameters selected
through the manual (greedy) search and the random search?

Exercise 2 - Build and test your own Neural Network for classification

[30 points]

There is no better way to understand how one of the core techniques of modern machine
learning works than to build a simple version of it yourself. In this exercise you will construct
and apply your own neural network classifier. You may use numpy if you wish but no other
libraries.

2.1 [10 points] Create a neural network class that follows the scikit-learn classifier conven-
tion by implementing fit, predict, and predict_proba methods. Your fit method should
run backpropagation on your training data using stochastic gradient descent. Assume the
activation function is a sigmoid. Choose your model architecture to have two input nodes, two
hidden layers with five nodes each, and one output node.

9

To guide you in the right direction with this problem, please find a skeleton of a neural
network class below. You absolutely MAY use additional methods beyond those suggested
in this template, but the methods listed below are the minimum required to implement the
model cleanly.

Strategies for debugging. One of the greatest challenges of this implementations is that
there are many parts and a bug could be present in any of them. Here are some recommended
tips:

• Development environment. Consider using an Integrated Development Environment
(IDE). I strongly recommend the use of VS Code and the Python debugging tools in
that development environment.

• Unit tests. You are strongly encouraged to create unit tests for most modules. Without
doing this will make your code extremely difficult to bug. You can create simple examples
to feed through the network to validate it is correctly computing activations and node
values. Also, if you manually set the weights of the model, you can even calculate
backpropagation by hand for some simple examples (admittedly, that unit test would be
challenging and is optional, but a unit test is possible).

• Compare against a similar architecture. You can also verify the performance of your
overall neural network by comparing it against the scikit-learn implementation and
using the same architecture and parameters as your model (your model outputs will
certainly not be identical, but they should be somewhat similar for similar parameter
settings).

Important Note

Building a neural net is a valuable learning opportunity, but a time intensive process. Due
to the depth of effort this question requires, some students may choose not to complete
this section. It’s only worth 10 points, which is not proportional to the time it takes
to get it working, and that’s by design. If you choose not to build your own neural
network, or if your neural network is not functional prior to submission, then use the
scikit-learn implementation instead in the questions below; where it asks to compare
to scikit-learn, compare against a random forest classifier instead.
Simply write “OMITTED” in your response to this question to indicate that you did not
write your own neural network.

neural network class skeleton code

class myNeuralNetwork(object):

def __init__(self, n_in, n_layer1, n_layer2, n_out, learning_rate=):
'''__init__
Class constructor: Initialize the parameters of the network including

10

the learning rate, layer sizes, and each of the parameters
of the model (weights, placeholders for activations, inputs,
deltas for gradients, and weight gradients). This method
should also initialize the weights of your model randomly

Input:
n_in: number of inputs
n_layer1: number of nodes in layer 1
n_layer2: number of nodes in layer 2
n_out: number of output nodes
learning_rate: learning rate for gradient descent

Output:
none

'''

def forward_propagation(self, x):
'''forward_propagation
Takes a vector of your input data (one sample) and feeds
it forward through the neural network, calculating activations and
layer node values along the way.

Input:
x: a vector of data representing 1 sample [n_in x 1]

Output:
y_hat: a vector (or scaler of predictions) [n_out x 1]
(typically n_out will be 1 for binary classification)

'''

def compute_loss(self, X, y):
'''compute_loss
Computes the current loss/cost function of the neural network
based on the weights and the data input into this function.
To do so, it runs the X data through the network to generate
predictions, then compares it to the target variable y using
the cost/loss function

Input:
X: A matrix of N samples of data [N x n_in]
y: Target variable [N x 1]

Output:
loss: a scalar measure of loss/cost

'''

def backpropagate(self, x, y):
'''backpropagate

11

Backpropagate the error from one sample determining the gradients
with respect to each of the weights in the network. The steps for
this algorithm are:

1. Run a forward pass of the model to get the activations
Corresponding to x and get the loss functionof the model
predictions compared to the target variable y

2. Compute the deltas (see lecture notes) and values of the
gradient with respect to each weight in each layer moving
backwards through the network

Input:
x: A vector of 1 samples of data [n_in x 1]
y: Target variable [scalar]

Output:
loss: a scalar measure of th loss/cost associated with x,y

and the current model weights
'''

def stochastic_gradient_descent_step(self):
'''stochastic_gradient_descent_step [OPTIONAL - you may also do this
directly in backpropagate]
Using the gradient values computed by backpropagate, update each
weight value of the model according to the familiar stochastic
gradient descent update equation.

Input: none
Output: none
'''

def fit(self, X, y, max_epochs=, learning_rate=, get_validation_loss=):
'''fit

Input:
X: A matrix of N samples of data [N x n_in]
y: Target variable [N x 1]

Output:
training_loss: Vector of training loss values for each epoch
validation_loss: Vector of validation loss values for each epoch

[optional output if get_validation_loss==True]
'''

def predict_proba(self, X):
'''predict_proba

12

Compute the output of the neural network for each sample in X, with the
last layer's sigmoid activation providing an estimate of the target
output between 0 and 1

Input:
X: A matrix of N samples of data [N x n_in]

Output:
y_hat: A vector of class predictions between 0 and 1 [N x 1]

'''

def predict(self, X, decision_thresh=):
'''predict
Compute the output of the neural network prediction for
each sample in X, with the last layer's sigmoid activation
providing an estimate of the target output between 0 and 1,
then thresholding that prediction based on decision_thresh
to produce a binary class prediction

Input:
X: A matrix of N samples of data [N x n_in]
decision_threshold: threshold for the class confidence score

of predict_proba for binarizing the output
Output:

y_hat: A vector of class predictions of either 0 or 1 [N x 1]
'''

def sigmoid(self, X):
'''sigmoid
Compute the sigmoid function for each value in matrix X

Input:
X: A matrix of any size [m x n]

Output:
X_sigmoid: A matrix [m x n] where each entry corresponds to the

entry of X after applying the sigmoid function
'''

def sigmoid_derivative(self, X):
'''sigmoid_derivative
Compute the sigmoid derivative function for each value in matrix X

Input:
X: A matrix of any size [m x n]

Output:
X_sigmoid: A matrix [m x n] where each entry corresponds to the

entry of X after applying the sigmoid derivative

13

function
'''

2.2. Apply your neural network.

• Create training, validation, and test datasets using sklearn.datasets.make_moons(N,
noise=0.20) data, where 𝑁𝑡𝑟𝑎𝑖𝑛 = 500 and 𝑁𝑡𝑒𝑠𝑡 = 100. The validation dataset should
be a portion of your training dataset that you hold out for hyperparameter tuning.

• Cost function plots. Train and validate your model on this dataset plotting your train-
ing and validation cost learning curves on the same set of axes. This is the training and
validation error for each epoch of stochastic gradient descent, where an epoch represents
having trained on each of the training samples one time.

• Tune the learning rate and number of training epochs for your model to improve perfor-
mance as needed. You’re free to use any methods you deem fit to tune your hyperpa-
rameters like grid search, random search, Bayesian optimization etc.

• Decision boundary plots. In two subplots, plot the training data on one subplot and
the validation data on the other subplot. On each plot, also plot the decision boundary
from your neural network trained on the training data.

• ROC Curve plots. Report your performance on the test data with an ROC curve
and the corresponding AUC score. Compare against the scikit-learn MLPClassifier
trained with the same parameters on the same set of axes and include the chance diagonal.
Note: if you chose not to build your own neural network in part (a) above, or if your neural
network is not functional prior to submission, then use the scikit-learn MLPClassifier
class instead for the neural network and compare it against a random forest classifier
instead. Be sure to set the hidden layer sizes, epochs, and learning rate for that model,
if so.

• Remember to retrain your model. After selecting your hyperparameters using
the validation data set, when evaluating the final performance on the ROC curve, it’s
good practice to retrain your model with the selected hyperparameters on the train +
validation dataset, before evaluating on the test data.

Note if you opted not to build your own neural network: in this case, for hyperparameter
tuning, we recommend using the partial_fit method to train your model for every epoch.
Partial fit allows you to incrementally fit on one sample at a time.

2.3. Suggest two ways in which you neural network implementation could be improved: are
there any options we discussed in class that were not included in your implementation that
could improve performance?

14

