
Assignment 5
Kaggle Competition and Unsupervised Learning

Kyle Bradbury

2025-03-05

Table of contents

Instructions

Instructions for all assignments can be found here. Note: this assignment falls under collabo-
ration Mode 2: Individual Assignment – Collaboration Permitted. Please refer to the syllabus
for additional information. Please be sure to list the names of any students that you worked
with on this assignment. Total points in the assignment add up to 90; an additional 10 points
are allocated to professionalism and presentation quality.

Learning objectives

Through completing this assignment you will be able to…

1. Apply the full supervised machine learning pipeline of preprocessing, model selection,
model performance evaluation and comparison, and model application to a real-world
scale dataset

2. Apply clustering techniques to a variety of datasets with diverse distributional properties,
gaining an understanding of their strengths and weaknesses and how to tune model
parameters

3. Apply PCA and t-SNE for performing dimensionality reduction and data visualization

1

https://kylebradbury.github.io/ids705/notebooks/assignment_instructions.html

Exercise 1 - Kaggle Classification Competition

[40 points]

You’ve learned a great deal about supervised learning and now it’s time to bring together all
that you’ve learned. You will be competing in a Kaggle Competition along with the rest of the
class! Your goal is to predict hotel reservation cancellations based on a number of potentially
related factors such as lead time on the booking, time of year, type of room, special requests
made, number of children, etc. While you will be asked to take certain steps along the way to
your submission, you’re encouraged to try creative solutions to this problem and your choices
are wide open for you to make your decisions on how to best make the predictions.

Important note

Follow the link posted on Ed to register for the competition. You can view the public
leaderboard anytime at the Kaggle website (see the Ed post).

The Data. The dataset is provided as a5_q1.pkl which is a pickle file format, which allows
you to load the data directly using the code below; the data can be downloaded from the Kaggle
competition website (see Ed Discussions for the link). A data dictionary for the project can be
found here and the original paper that describes the dataset can be found here. When you load
the data, 5 matrices are provided X_train_original, y_train, and X_test_original, which
are the original, unprocessed features and labels for the training set and the test features (the
test labels are not provided - that’s what you’re predicting). Additionally, X_train_ohe and
X_test_ohe are provided which are one-hot-encoded (OHE) versions of the data. The OHE
versions OHE processed every categorical variable. This is provided for convenience if you find
it helpful, but you’re welcome to reprocess the original data other ways if your prefer.

Scoring. You will need to achieve a minimum acceptable level of performance to demonstrate
proficiency with using these supervised learning techniques. Beyond that, it’s an open compe-
tition and scoring in the top three places of the private leaderboard will result in 3, 2, and 1
bonus points in this assignment, respectively (and the pride of the class!). Note: the
Kaggle leaderboard has a public and private component. The public component is viewable
throughout the competition, but the private leaderboard is revealed at the end. When you
make a submission, you immediately see your submission on the public leaderboard, but that
only represents scoring on a fraction of the total collection of test data, the rest remains hid-
den until the end of the competition to prevent overfitting to the test data through repeated
submissions. You will be be allowed to hand-select two eligible submissions for private score,
or by default your best two public scoring submissions will be selected for private scoring.

2

https://github.com/rfordatascience/tidytuesday/blob/master/data/2020/2020-02-11/readme.md
https://www.sciencedirect.com/science/article/pii/S2352340918315191

Requirements:

1.1. Explore your data. Review and understand your data. Look at it; read up on what the
features represent; think through the application domain; visualize statistics from the paper
data to understand any key relationships. There is no output required for this question,
but you are encouraged to explore the data personally before going further.

1.2. Preprocess your data. Preprocess your data so it’s ready for use for classification
and describe what you did and why you did it. Preprocessing may include: normalizing
data, handling missing or erroneous values, separating out a validation dataset, preparing
categorical variables through one-hot-encoding, etc. To make one step in this process easier,
you’re provided with a one-hot-encoded version of the data already.

• Comment on each type of preprocessing that you apply and both how and why you apply
it.

1.3. Select, train, and compare models. Fit at least 5 models to the data. Some of these
can be experiments with different hyperparameter-tuned versions of the same model, although
all 5 should not be the same type of model. There are no constraints on the types of models,
but you’re encouraged to explore examples we’ve discussed in class including:

1. Logistic regression
2. K-nearest neighbors
3. Random Forests
4. Neural networks
5. Support Vector Machines
6. Ensembles of models (e.g. model bagging, boosting, or stacking). Scikit-learn offers a

number of tools for assisting with this including those for bagging, boosting, and stacking.
You’re also welcome to explore options beyond the sklean universe; for example, some of
you may have heard of XGBoost which is a very fast implementation of gradient boosted
decision trees that also allows for parallelization.

When selecting models, be aware that some models may take far longer than others to train.
Monitor your output and plan your time accordingly.

Assess the classification performance AND computational efficiency of the models you se-
lected:

• Plot the ROC curves and PR curves for your models in two plots: one of ROC curves
and one of PR curves. For each of these two plots, compare the performance of the
models you selected above and trained on the training data, evaluating them on the
validation data. Be sure to plot the line representing random guessing on each plot. You
should plot all of the model’s ROC curves on a single plot and the PR curves on a single
plot. One of the models should also be your BEST performing submission on the Kaggle
public leaderboard (see below). In the legends of each, include the area under the curve

3

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html#sklearn.ensemble.BaggingClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.StackingClassifier.html
https://github.com/dmlc/xgboost

for each model (limit to 3 significant figures). For the ROC curve, this is the AUC; for
the PR curve, this is the average precision (AP).

• As you train and validate each model time how long it takes to train and validate in each
case and create a plot that shows both the training and prediction time for each model
included in the ROC and PR curves.

• Describe:

– Your process of model selection and hyperparameter tuning
– Which model performed best and your process for identifying/selecting it

1.4. Apply your model “in practice”. Make at least 5 submissions of different model
results to the competition (more submissions are encouraged and you can submit up to 5 per
day!). These do not need to be the same that you report on above, but you should select your
most competitive models.

• Produce submissions by applying your model on the test data.
• Be sure to RETRAIN YOUR MODEL ON ALL LABELED TRAINING AND VALIDA-

TION DATA before making your predictions on the test data for submission. This will
help to maximize your performance on the test data.

• In order to get full credit on this problem you must achieve an AUC on the Kaggle public
leaderboard above the “Benchmark” score on the public leaderboard.

Guidance

1. Preprocessing. You may need to preprocess the data for some of these models to
perform well (scaling inputs or reducing dimensionality). Some of this preprocessing
may differ from model to model to achieve the best performance. A helpful tool for
creating such preprocessing and model fitting pipelines is the sklearn pipeline module
which lets you group a series of processing steps together.

2. Hyperparameters. Hyperparameters may need to be tuned for some of the model you
use. You may want to perform hyperparameter tuning for some of the models. If you
experiment with different hyperparameters that include many model runs, you may want
to apply them to a small subsample of your overall data before running it on the larger
training set to be time efficient (if you do, just make sure to ensure your selected subset
is representative of the rest of your data).

3. Validation data. You’re encouraged to create your own validation dataset for com-
paring model performance; without this, there’s a significant likelihood of overfitting to
the data. A common choice of the split is 80% training, 20% validation. Before you
make your final predictions on the test data, be sure to retrain your model on the entire
dataset.

4

4. Training time. This is a larger dataset than you’ve worked with previously in this class,
so training times may be higher that what you’ve experienced in the past. Plan ahead
and get your model pipeline working early so you can experiment with the models you
use for this problem and have time to let them run.

Starter code

Below is some code for (1) loading the data and (2) once you have predictions in the form of
confidence scores for those classifiers, to produce submission files for Kaggle.

import pandas as pd
import numpy as np
import pickle

################################
Load the data
################################
data = pd.read_pickle("./data/a5_q1.pkl")

y_train = data['y_train']
X_train_original = data['X_train'] # Original dataset
X_train_ohe = data['X_train_ohe'] # One-hot-encoded dataset

X_test_original = data['X_test']
X_test_ohe = data['X_test_ohe']

################################
Produce submission
################################

def create_submission(confidence_scores, save_path):
'''Creates an output file of submissions for Kaggle

Parameters

confidence_scores : list or numpy array

Confidence scores (from predict_proba methods from classifiers) or
binary predictions (only recommended in cases when predict_proba is
not available)

save_path : string
File path for where to save the submission file.

5

Example:
create_submission(my_confidence_scores, './data/submission.csv')

'''
import pandas as pd

submission = pd.DataFrame({"score":confidence_scores})
submission.to_csv(save_path, index_label="id")

Exercise 2 - Clustering

[25 points]

Clustering can be used to reveal structure between samples of data and assign group mem-
bership to similar groups of samples. This exercise will provide you with experience applying
clustering algorithms and comparing these techniques on various datasets to experience the
pros and cons of these approaches when the structure of the data being clustered varies. For
this exercise, we’ll explore clustering in two dimensions to make the results more tangible, but
in practice these approaches can be applied to any number of dimensions.

Note: For each set of plots across the five datasets, please create subplots within a single figure
(for example, when applying DBSCAN - please show the clusters resulting from DBSCAN as
a single figure with one subplot for each dataset). This will make comparison easier.

2.1. Run K-means and choose the number of clusters. Five datasets are provided for
you below and the code to load them below.

• Scatterplot each dataset
• For each dataset run the k-means algorithm for values of 𝑘 ranging from 1 to 10 and

for each plot the “elbow curve” where you plot dissimilarity in each case. Here, you can
measure dissimilarity using the within-cluster sum-of-squares, which in sklean is known
as “inertia” and can be accessed through the inertia_ attribute of a fit KMeans class
instance.

• For each dataset, where is the elbow in the curve of within-cluster sum-of-squares and
why? Is the elbow always clearly visible? When it’s not clear, you will have to use your
judgment in terms of selecting a reasonable number of clusters for the data. There are
also other metrics you can use to explore to measure the quality of cluster fit (but do
not have to for this assignment) including the silhouette score, the Calinski-Harabasz
index, and the Davies-Bouldin, to name a few within sklearn alone. However, assessing
the quality of fit without “preferred” cluster assignments to compare against (that is,
in a truly unsupervised manner) is challenging because measuring cluster fit quality is
typically poorly-defined and doesn’t generalize across all types of inter- and intra-cluster
variation.

6

• Plot your clustered data (different color for each cluster assignment) for your best 𝑘-
means fit determined from both the elbow curve and your judgment for each dataset
and your inspection of the dataset.

2.2. Apply DBSCAN. Vary the eps and min_samples parameters to get as close as you
can to having the same number of clusters as your choices with K-means. The same code plots
as gray/black any points that were not assigned to clusters.

2.3. Apply Spectral Clustering. Select the same number of clusters as selected by k-
means.

2.4. Comment on the strengths and weaknesses of each approach. In particular,
mention:

• Which technique worked “best” and “worst” (as defined by matching how human intu-
ition would cluster the data) on each dataset?

• How much effort was required to get good clustering for each method (how much param-
eter tuning needed to be done)?

Important note

For these clustering plots in this question, do NOT include legends indicating cluster as-
signment; instead, just make sure the cluster assignments are clear from the plot (e.g. dif-
ferent colors for each cluster)

Code is provided below for loading the datasets and for making plots with the clusters as
distinct colors

################################
Load the data
################################
import os
import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs, make_moons

Create / load the datasets:
n_samples = 1500
X0, _ = make_blobs(n_samples=n_samples, centers=2, n_features=2, random_state=0)
X1, _ = make_blobs(n_samples=n_samples, centers=5, n_features=2, random_state=0)

random_state = 170
X, y = make_blobs(n_samples=n_samples, random_state=random_state, cluster_std=1.3)
transformation = [[0.6, -0.6], [-0.2, 0.8]]

7

X2 = np.dot(X, transformation)
X3, _ = make_blobs(n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state)
X4, _ = make_moons(n_samples=n_samples, noise=.12)

X = [X0, X1, X2, X3, X4]
The datasets are X[i], where i ranges from 0 to 4

################################
Code to plot clusters
################################
def plot_cluster(ax, data, cluster_assignments):

'''Plot two-dimensional data clusters

Parameters

ax : matplotlib axis

Axis to plot on
data : list or numpy array of size [N x 2]

Clustered data
cluster_assignments : list or numpy array [N]

Cluster assignments for each point in data

'''
clusters = np.unique(cluster_assignments)
n_clusters = len(clusters)
for ca in clusters:

kwargs = {}
if ca == -1:

if samples are not assigned to a cluster (have a cluster assignment of -1, color them gray)
kwargs = {'color':'gray'}
n_clusters = n_clusters - 1

ax.scatter(data[cluster_assignments==ca, 0], data[cluster_assignments==ca, 1],s=5,alpha=0.5, **kwargs)
ax.set_xlabel('feature 1')
ax.set_ylabel('feature 2')
ax.set_title(f'No. Clusters = {n_clusters}')
ax.axis('equal')

Exercise 3 - Dimensionality reduction and visualization of digits with PCA and
t-SNE

[25 points]

8

3.1. Reduce the dimensionality of the data with PCA for data visualization. Load the
scikit-learn digits dataset (code provided to do this below). Consider whether any pre-
processing may need to be applied (do the data need to be normalized?). Apply PCA and
reduce the data (with the associated cluster labels 0-9) into a 2-dimensional space. Plot the
data with labels in this two dimensional space (labels can be colors, shapes, or using the actual
numbers to represent the data - definitely include a legend in your plot).

3.2. Create a plot showing the cumulative fraction of variance explained as you incorporate
from 1 through all 𝐷 principal components of the data (where 𝐷 is the dimensionality of the
data).

• What fraction of variance in the data is UNEXPLAINED by the first two principal
components of the data?

• Briefly comment on how this may impact how well-clustered the data are. You can use
the explained_variance_ attribute of the PCA module in scikit-learn to assist with
this question

3.3. Reduce the dimensionality of the data with t-SNE for data visualization. T-distributed
stochastic neighborhood embedding (t-SNE) is a nonlinear dimensionality reduction technique
that is particularly adept at embedding the data into lower 2 or 3 dimensional spaces. Apply t-
SNE using the scikit-learn implementation to the digits dataset and plot it in 2-dimensions
(with associated cluster labels 0-9). You may need to adjust the parameters to get acceptable
performance. You can read more about how to use t-SNE effectively here.

3.4. Briefy compare/contrast the performance of these two techniques.

• Which seemed to cluster the data best and why?
• Notice that while t-SNE has a fit method and a fit_transform method, these meth-

ods are actually identical, and there is no transform method. Why is this? What
implications does this imply for using this method?

Note: Remember that you typically will not have labels available in most problems.

Code is provided for loading the data below.

################################
Load the data
################################
from sklearn import datasets
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE

load dataset
digits = datasets.load_digits()
n_sample = digits.target.shape[0]

9

https://distill.pub/2016/misread-tsne/

n_feature = digits.images.shape[1] * digits.images.shape[2]
X_digits = np.zeros((n_sample, n_feature))
for i in range(n_sample):

X_digits[i, :] = digits.images[i, :, :].flatten()
y_digits = digits.target

10

